Wind Turbine

Ali Al Sam
Wind Turbine

- Wind Turbine
 - Background

- Wave effects
 - Swells

- Complex terrain
 - Hills
Wind Turbine

- **Wind Energy**
 - \(P \propto U_{\text{hub}}^3 \)
Wind Turbine

- Wind Farm
 - Optimum distance \(h_x \)
Wind Turbine

- Wind Farm
 - Optimum distance h_x
Wind Turbine

- Wind Farm
 - Optimum distance h_x

- WT wake
 - Wind velocity
 - Wind shear
 - Wind veer

- ABL turbulence
- ABL stability
- ABL depth
- Surface roughness
Wind Turbine

- Wind Velocity & Direction
 - Long term statistics
 - Short term statistics
- Are available for some heights
 - Logharitmic profile
Wind Turbine

- Wind Turbine
 - Background

- Wave effects
 - Swells

- Complex terrain
 - Multiply hills
Wave Effects

- **Swell**
 - Nonlocal waves generated remotely by storms.
 - Uniform long waves that can propagate for a relatively long distance with little attenuation.
 - May have any direction and velocity, independent of the local wind.
Wave Effects

- The solver
 - OpenFOAM 2.1.3
 - Buoyant solver, Boussinesq approximation
 - Fixed driving pressure force (from the geostrophic balance)
 - Coriolis force is added
 - Modified GenEddyVisc, with a variable length scale f(stability)
 - Modified oneEqEddy: buoyant term, and variable Prt are added
 - A new BC for velocity
Wave Effects

- **BCs**
 - Periodic in horizontal directions
 - No slip at upper boundary
 - The ABL height is controlled by temperature profile
 - Wall shear stress at lower boundary, $f(\text{stability})$

- **Moving reference of frame**
 - Wave length 100m
 - Swell attenuation is neglected
 - Unresolved waves are modeled as roughness height

- **Neutral ABL**
Wave Effects

Resolution

- 1200m 1200m 800m
- \(N_x = N_y = 250, N_z = 100 \)
- 2nd order spatial and temporal schemes
Wave Effects

Summary

- The swell-induced stress has an opposite sign to that of the turbulent stress.
- The magnitude of the swell-induced stress is increased with the wave-age and wave steepness.
- The increase in wave-induced stress normalized by the geostrophic wind is found to be quadratic with the wave-age and linear with the wave steepness.
- The swell-induced stress decays exponentially above the surface.
- The decaying rate shows no significant variation with the swell parameters and can be scaled with the wavelength and the height above the surface.
- At high swell wave-age and wave steepness, the swell-induced stress increases and exceeds the turbulent stress which results in a negative wind drag, i.e. a thrust.
Wave Effects

Summary

- The wind velocity accelerated to a velocity larger than its geostrophic wind and forms the super-geostrophic wind jet.
- The size and the intensity of the jet increase, while the height of the maximum wind velocity decreases, with wave-age and wave-steepness.
- Above the Umax, the velocity is reduced with a negative wind gradient to match its geostrophic wind at the top of the BL, while the velocity decreases below it to its surface value.
- At higher wave-age and wave steepness, the negative stress accelerates the wind and the wind gradient between the super-geostrophic wind jet and the rest of the MABL, therefore the turbulent intensity and shear stress increases again.
Wave Effects

Wave statistics

- <=0.5
- >0.5 - 1
- >1 - 1.5
- >1.5 - 2
- >2

Wave climatology

HANLEY ET AL.

Fig. 6. Inverse wave age calculated using the ERA-40 wind and wave data averaged over 1958-2001.
Wave Effects

Wave induced stress Velocity profile
Wave Effects

Without waves

With waves
Wave Effects

Without waves

With waves
Wave Effects

Without waves

With waves
Wind Turbine

- Wind Turbine
 - Background

- Wave effects
 - Swells

- Complex terrain
 - Hills
Complex Terrain
Complex Terrain
Complex Terrain